
This book is licensed under a Creative Commons Attribution 3.0 License

5. Divide-and-conquer and 
recursion

Learning objectives:

• The algorithmic principle of divide-and-conquer leads directly to recursive procedures. 

• Examples: Merge sort, tree traversal. Recursion and iteration.

• My friend liked to claim "I'm 2/3 Cherokee." Until someone would challenge him "Two- thirds? You mean 

1/2 , or, or maybe 3/8, how on earth can you be 2/3 of anything?" "It's easy," said Jim, "both my parents are  

2/3."

An algorithmic principle

Let A(D) denote the application of an algorithm A to a set of data D, producing a result R. An important class of 

algorithms, of a type called divide-and-conquer, processes data in two distinct ways, according to whether the data 

is small or large:

• If the set D is small, and/or of simple structure, we invoke a simple algorithm A0 whose application A0(D) 

yields R.

• If the set D is large, and/or of complex structure, we partition it into smaller subsets D 1, … , Dk. For each i, 

apply A(Di) to yield a result Ri. Combine the results R1, … , Rk to yield R.

This  algorithmic principle  of  divide-and-conquer leads  naturally to the notion of recursive procedures.  The  

following example outlines  the concept  in  a  high-level  notation,  highlighting  the role  of  parameters  and local  

variables.

procedure A(D: data; var R: result);

var  D1, … , Dk: data;  R1, … , Rk: result;

begin

if  simple(D) then R := A0(D)

else { D1, … , Dk := partition(D);

R1 := A(D1); … ; Rk := A(Dk);

R := combine(R1, … , Rk) }

end;

Notice how an initial data set D spawns sets  D1, … , Dk which, in turn, spawn children of their own. Thus the 

collection of all data sets generated by the partitioning scheme is a tree with root D. In order for the recursive  

procedure A(D) to terminate in all cases, the partitioning function must meet the following condition: Each branch 

of the partitioning tree, starting from the root D, eventually terminates with a data set D0 that satisfies the predicate 

'simple(D0)', to which we can apply the algorithm.

Divide-and-conquer reduces a problem on data set D to k instances of the same problem on new sets D 1, … , Dk 

that  are  "simpler"  than  the  original  set  D.  Simpler  often  means  "has  fewer  elements",  but  any  measure  of  

Algorithms and Data Structures 45  A Global Text

http://creativecommons.org/licenses/by/3.0/


5. Divide-and-conquer and recursion

"simplicity" that monotonically heads for the predicate 'simple' will do, when algorithm A0 will finish the job. "D is  

simple" may mean "D has no elements", in which case A0 may have to do nothing at all; or it may mean "D has 

exactly one element", and A0 may just mark this element as having been visited.

The following sections show examples of divide-and-conquer algorithms. As we will see, the actual workload is  

sometimes  distributed  unequally  among  different  parts  of  the  algorithm.  In  the  sorting  example,  the  step 

'R:=combine(R1, … , Rk)' requires most of the work; in the "Tower of Hanoi" problem, the application of algorithm 

A0 takes the most effort.

Divide-and-conquer expressed as a diagram: merge sort

Suppose that we wish to sort a sequence of names alphabetically, as shown in Exhibit 5.1. We make use of the 

divide-and-conquer strategy by partitioning a "large" sequence D into two subsequences D1 and D2, sorting each 

subsequence, and then merging them back together into sorted order. This is our algorithm A(D). If D contains at  

most one element, we do nothing at all. A0 is the identity algorithm, A0(D) = D.

Exhibit 5.1: Sorting the sequence {Z, A, S, D} by using a divide-and-conquer scheme

procedure sort(var D: sequence);

var  D1, D2: sequence;

function combine(D1, D2: sequence): sequence;

begin  { combine }

merge the two sorted sequences D1 and D2 
into a single sorted sequence D';

return(D')

end;  { combine }

begin  { sort}

if  |D| > 1  then  { split D into two sequences D1 and D2 of 

equal size;

sort(D1);  sort(D2);  D := combine(D1, D2) }

{ if |D| ≤ 1, D is trivially sorted, do nothing }

end;  { sort }

46



This book is licensed under a Creative Commons Attribution 3.0 License

In the chapter on “sorting and its complexity”, under the section “merging and merge sorts” we turn this divide-

and-conquer scheme into a program.

Recursively defined trees

A tree, more precisely, a rooted, ordered tree, is a data type used primarily to model any type of hierarchical  

organization.  Its  primitive  parts  are  nodes and  leaves.  It  has  a  distinguished node  called  the  root,  which,  in 

violation of nature, is typically drawn at the top of the page, with the tree growing downward. Each node has a  

certain number of children, either leaves or nodes; leaves have no children. The exact definition of such trees can  

differ slightly with respect to details and terminology. We may define a binary tree, for example, by the condition 

that each node has either exactly, or at most, two children.

The pictorial  grammar shown in  Exhibit  5.2 captures  this  recursive definition of 'binary  tree'  and fixes  the 

details left unspecified by the verbal description above. It uses an alphabet of three symbols: the nonterminal 'tree 

symbol', which is also the start symbol; and two terminal symbols, for 'node' and for 'leaf'.

Exhibit 5.2: The three symbols of the alphabet of a tree grammar

There are  two production or rewriting rules,  p1 and p2 (Exhibit  5.3).  The  derivation shown in  Exhibit  5.4 

illustrates the application of the production rules to generate a tree from the nonterminal start symbol.

Exhibit 5.3: Rule p1 generates a leaf, rule p2 generates a node and two new trees

Exhibit 5.4: One way to derive the tree at right

We may make the production rules more detailed by explicitly naming the coordinates associated with each 

symbol.  On a display  device  such as a computer screen,  the x-  and y-values of  a point  are typically Cartesian 

coordinates with the origin in the upper-left corner. The x-values increase toward the bottom and the y-values  

increase toward the right of the display. Let (x, y) denote the screen position associated with a particular symbol,  

and let d denote the depth of a node in the tree. The root has depth 0, and the children of a node with depth d have  

depth d+1. The different levels of the tree  are separated by some constant distance s.  The separation between 

siblings is determined by a (rapidly decreasing) function t(d) which takes as argument the depth of the siblings and 

depends on the drawing size of the symbols and the resolution of the screen. These more detailed productions are  

shown in Exhibit 5.5.

Algorithms and Data Structures 47  A Global Text

http://creativecommons.org/licenses/by/3.0/


5. Divide-and-conquer and recursion

Exhibit 5.5: Adding coordinate information to productions in order to control graphic layout

The translation of these two rules into high-level code is now plain:

procedure p1(x, y: coordinate);

begin

eraseTreeSymbol(x, y);

drawLeafSymbol(x, y)

end;

procedure p2(x, y: coordinate; d: level);

begin

eraseTreeSymbol(x, y);

drawNodeSymbol(x, y);

drawTreeSymbol(x + s, y – t(d + 1));

drawTreeSymbol(x + s, y + t(d + 1))

end;

If we choose t(d) = c · 2–d, these two procedures produce the display shown in Exhibit 5.6 of the tree generated 

in Exhibit 5.4.

Exhibit 5.6: Sample layout obtained by halving horizontal displacement at each successive level

Technical remark about the details of defining binary trees: Our grammar forces every node to have exactly two 

children: A child may be a node or a leaf. This lets us subsume two frequently occurring classes of binary trees 

under one common definition.

1. 0-2 (binary) trees. We may identify leaves and nodes, making no distinction between them (replace the 

squares by circles in Exhibit 5.3 and Exhibit 5.4). Every node in the new tree now has either zero or two 

children, but not one. The smallest tree has a single node, the root.

2. (Arbitrary)  Binary trees. Ignore  the leaves  (drop  the squares  in  Exhibit  5.3 and  Exhibit  5.4 and the 

branches leading into a square). Every node in the new tree now has either zero, one, or two children. The 

smallest tree (which consisted of a single leaf) now has no node at all; it is empty.

For clarity's sake, the following examples use the terminology of nodes and leaves introduced in the defining  

grammar. In some instances we point out what happens under the interpretation that leaves are dropped.  

48



This book is licensed under a Creative Commons Attribution 3.0 License

Recursive tree traversal

Recursion is a powerful tool for programming divide-and-conquer algorithms in a straightforward manner. In  

particular, when the data to be processed is defined recursively, a recursive processing algorithm that mirrors the 

structure of the data is most natural. The recursive tree traversal procedure below illustrates this point.

Traversing a tree (in general: a graph, a data structure) means visiting every node and every leaf in an orderly 

sequence, beginning and ending at the root. What needs to be done at each node and each leaf is of no concern to 

the traversal algorithm, so we merely designate that by a call to a 'procedure visit( )'. You may think of inspecting 

the contents of all nodes and/or leaves, and writing them to a file.

Recursive tree traversals use divide-and-conquer to decompose a tree into its subtrees: At each node visited 

along the way, the two subtrees L and R to the left and right of this node must be traversed. There are three natural  

ways to sequence the node visit and the subtree traversals:

1. node; L; R  { preorder, or prefix }

2. L; node; R  { inorder or infix }

3. L; R; node  { postorder or suffix }

The following example translates this traversal algorithm into a recursive procedure:

procedure traverse(T: tree);

{ preorder, inorder, or postorder traversal of tree T with 

leaves }

begin

if  leaf(T) then visitleaf(T)

else { T is composite }

{ visit1(root(T));

traverse(leftsubtree(T));

visit2(root(T));

traverse(rightsubtree(T);

visit3(root(T)) }

end;

When leaves are ignored (i.e. a tree consisting of a single leaf is considered to be empty), the procedure body  

becomes slightly simpler:

if  not empty(T)  then  { … }

To accomplish the k-th traversal scheme (k = 1, 2, 3), 'visitk' performs the desired operation on the node, while 

the other two visits do nothing. If all three visits print out the name of the node, we obtain a sequence of node 

names  called  'triple  tree  traversal',  shown  in  Exhibit  5.7 along  with  the  three  traversal  orders  of  which  it  is 

composed. During the traversal the nodes are visited in the following sequence:

Algorithms and Data Structures 49  A Global Text

http://creativecommons.org/licenses/by/3.0/


5. Divide-and-conquer and recursion

Exhibit 5.7: Three standard orders merged into a triple tree traversal

Recursion versus iteration: the Tower of Hanoi

The "Tower of Hanoi" is a stack of n disks of different sizes, held in place by a tall peg (Exhibit 5.8). The task is to 

transfer the tower from source peg S to a target peg T via an intermediate peg I, one disk at a time, without ever  

placing a larger disk on a smaller one. In this case the data set D is a tower of n disks, and the divide-and-conquer  

algorithm A partitions D asymmetrically into a small "tower" consisting of a single disk (the largest, at the bottom 

of the pile) and another tower D' (usually larger, but conceivably empty) consisting of the n – 1 topmost disks. The  

puzzle is solved recursively in three steps:

1. Transfer D' to the intermediate peg I.  

2. Move the largest disk to the target peg T.  

3. Transfer D' on top of the largest disk at the target peg T.

Exhibit 5.8: Initial configuration of the Tower of Hanoi.

Step 1 deserves more explanation. How do we transfer the n – 1 topmost disks from one peg to another? Notice  

that  they  themselves  constitute  a  tower,  to  which we  may  apply  the same three-step  algorithm.  Thus we  are 

presented with successively simpler problems to solve, namely, transferring the n – 1 topmost disks from one peg to 

another, for decreasing n, until finally, for n = 0, we do nothing.

procedure Hanoi(n: integer; x, y, z: peg);

{ transfer a tower with n disks from peg x, via y, to z }

begin

if  n > 0  then  { Hanoi(n – 1, x, z, y);  move(x, z);  Hanoi(n – 

1, y, x, z) }

end;

Recursion has the advantage of intuitive clarity. Elegant and efficient as this solution may be, there is some 

complexity hidden in the bookkeeping implied by recursion.

50



This book is licensed under a Creative Commons Attribution 3.0 License

The following procedure is an equally elegant and more efficient iterative solution to this problem. It assumes 

that the pegs are cyclically ordered, and the target peg where the disks will first come to rest depends on this order  

and on the parity of n (Exhibit 5.9). For odd values of n, 'IterativeHanoi' moves the tower to peg I, for even values of  

n, to peg T.

Exhibit 5.9: Cyclic order of the pegs.

procedure IterativeHanoi(n: integer);

var  odd: boolean;  { odd represents the parity of the move }

begin

odd := true;

repeat

 case  odd  of

true: transfer smallest disk cyclically to next peg;

false: make the only legal move leaving the smallest in place

end;

odd := not odd

until  entire tower is on target peg

end;

Exercise: recursive or iterative pictures?

Chapter 4 presented some beautiful examples of recursive pictures, which would be hard to program without  

recursion.  But  for  simple  recursive  pictures  iteration  is  just  as  natural.  Specify  a  convenient  set  of  graphics  

primitives  and  use  them  to  write  an  iterative  procedure  to  draw  Exhibit  5.10 to  a  nesting  depth  given  by  a 

parameter d.

Exhibit 5.10: Interleaved circles and equilateral triangles cause the radius to be exactly halved at each step.

Solution

There  are  many  choices  of  suitable  primitives  and  many  ways  to  program  these  pictures.  Specifying  an  

equilateral triangle by its center and the radius of its circumscribed circle simplifies the notation. Assume that we  

may use the procedures:

procedure circle(x, y, r: real); { coordinates of center and 

radius }

procedure equitr(x, y, r: real); { center and radius of 

circumscribed circle}

Algorithms and Data Structures 51  A Global Text

http://creativecommons.org/licenses/by/3.0/


5. Divide-and-conquer and recursion

procedure citr(x, y, r: real; d: integer);

var vr: real;  { variable radius }

i: integer;

begin

vr := r;

for i := 1 to d do  { equitr(x, y, vr);  vr := vr/2;  circle(x, y, 

vr) }

{ show that the radius of consecutively nested circles gets

exactly halved at each step }

end;

The flag of Alfanumerica: an algorithmic novel on iteration and recursion

In the process of automating its flag industry, the United States of Alfanumerica announced a competition for 

the most elegant program to print its flag:

All solutions submitted to the prize committee fell into one of two classes, the iterative and recursive programs. 

The proponents of these two algorithm design principles could not agree on a winner, and the selection process 

sparked a civil war that split the nation into two: the Iterative States of Alfanumerica (ISA) and the Recursive States  

of Alfanumerica (RSA). Both nations fly the same flag but use entirely different production algorithms.

1. Write a 

procedure ISA(k: integer);

to print the ISA flag, using an iterative algorithm, of course. Assume that k is a power of 2 and k ≤ (half the  

line length of the printer).

2. Explain why the printer industry in RSA is much more innovative than the one in ISA. All modern RSA 

printers include operations for positioning the writing head anywhere within a line, and line feed works  

both forward and backward.

3. Specify  the  precise  operations  for  some  RSA  printer  of  your  design.  Using  these  operations,  write  a 

recursive 

procedure RSA(k: integer); 

to print the RSA flag.

4. Explain an unforeseen consequence of this drive to automate the flag industry of Alfanumerica: In both ISA 

and RSA, a growing number of flags can be seen fluttering in the breeze turned around by 90˚.

Exercises

1. Whereas divide-and-conquer algorithms usually attempt to divide the data in equal halves, the recursive  

Tower  of  Hanoi  procedure  presented  in  the  section  'Recursion  versus  iteration:  The  Tower  of  Hanoi" 

divides the data in a very asymmetric manner: a single disk versus n – 1 disks. Why?

2. Prove by induction on n that the iterative program 'IterativeHanoi' solves the problem in 2n–1 iterations.

52

                ****************
        ********        ********
    ****    ****    ****    ****
  **  **  **  **  **  **  **  **
 * * * * * * * * * * * * * * * *

k blanks followed by k stars
twice (k/2 blanks followed by k/2 stars)
…
continue doubling and halving
down to runs length of 1.


